A random matrix analysis and improvement of semi-supervised learning for large dimensional data

نویسندگان

  • Xiaoyi Mai
  • Romain Couillet
چکیده

This article provides an original understanding of the behavior of a class of graph-oriented semi-supervised learning algorithms in the limit of large and numerous data. It is demonstrated that the intuition at the root of these methods collapses in this limit and that, as a result, most of them become inconsistent. Corrective measures and a new data-driven parametrization scheme are proposed along with a theoretical analysis of the asymptotic performances of the resulting approach. A surprisingly close behavior between theoretical performances on Gaussian mixture models and on real datasets is also illustrated throughout the article, thereby suggesting the importance of the proposed analysis for dealing with practical data. As a result, significant performance gains are observed on practical data classification using the proposed parametrization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

The Graduate School SEMI - SUPERVISED CLUSTERING FOR HIGH - DIMENSIONAL AND SPARSE FEATURES

Clustering is one of the most common data mining tasks, used frequently for data organization and analysis in various application domains. Traditional machine learning approaches to clustering are fully automated and unsupervised where class labels are unknown a priori. In real application domains, however, some “weak” form of side information about the domain or data sets can be often availabl...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Results from a Semi-Supervised Feature Learning Competition

We present results from a recent large-scale semi-supervised feature learning competition, which attracted twenty-nine teams and 238 total submissions. The learning task was drawn from a real world task in malicious url classification. This was a large scale binary classification task, with a sparse feature space of one million features, and training data sets of 50,000 labeled examples and one...

متن کامل

Ensemble learning with trees and rules: Supervised, semi-supervised, unsupervised

In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised, semi-supervised and unsupervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by post processing the rules with partial least squares regression have significantly better prediction performance than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.03404  شماره 

صفحات  -

تاریخ انتشار 2017